
MATH 245 F24, Exam 2 Solutions

1. Carefully define the following terms: Proof by Shifted Induction, recurrence.
Let s ∈ Z. To prove “∀x ∈ Z with x ≥ s, P (x)” by shifted induction, we must (a) prove
P (s); and (b) prove ∀x ∈ Z with x ≥ s, P (x) → P (x + 1). A recurrence is a sequence in
which all but finitely many terms are defined out of the previous terms.

2. Carefully state The Master Theorem.
Let a ∈ N, k ∈ R, and b ∈ R with b > 1 (three constants). Let cn be a sequence with
cn = Θ(nk). Set d = logb a. Consider now the sequence Tn = aTn/b + cn. The Master
Theorem now has three cases:
If k < d, then Tn = Θ(nd). If k = d, then Tn = Θ(nd log n). If k > d then Tn = Θ(nk).

3. Let an = n3 + 4n+ sin(n). Prove or disprove that an = Θ(n3).
The statement is true, and its proof has two halves.

an = O(n3): Choose M = 6 and n0 = 1. Let n ≥ n0. Now, n3 ≥ n so 4n3 ≥ 4n. Also,
n3 ≥ n ≥ 1. Now, |an| ≤ |n3|+ |4n|+ | sinn| ≤ n3 + 4n+ 1 ≤ n3 + 4n3 + n3 = 6n3 = 6|bn|.
an = Ω(n3): Choose M = 1 and n0 = 1. Let n ≥ n0. Now, sinn ≥ −1, so n+sinn ≥ n−1 ≥ 0,
and hence n3 + 3n + (n + sinn) ≥ 0. Hence, 1|an| = |n3 + 4n + sinn| = n3 + 4n + sinn =
n3 + 3n+ (n+ sinn) ≥ n3 + 0 + 0 = |bn|.
COMMON ALGEBRA ERRORS: While it is true that |a + b| ≤ |a| + |b| (this is called the
triangle inequality), it is NOT true that |a+ b| = |a|+ |b|. For example, take a = 3, b = −3;
we have |a+ b| = 0 while |a|+ |b| = 6. It is also NOT true that | sinn| = sinn. For example,
take n = −π/2; we have | sinn| = 1 while sinn = −1. Some of you got these errors out of
your system when you were solving exercise 7.15, but some of you did not.

4. Let n ∈ Z. Prove that
n2 − n− 2

2
∈ Z.

Note that n2 − n − 2 = (n − 2)(n + 1). We apply the Division Algorithm Theorem to n, 2,
getting q, r ∈ Z with n = 2q + r and 0 ≤ r < 2.
(or we can cite Cor. 1.8 to know that n is even or odd, then use the definitions of even, odd).

If n = 2q + 0, then n2−n−2
2 = (2q−2)(n+1)

2 = (q − 1)(n+ 1) ∈ Z.

If instead n = 2q + 1, then n2−n−2
2 = (n−2)(2q+1+1)

2 = (n− 2)(q + 1) ∈ Z.

In both cases, n2−n−2
2 ∈ Z.

5. Prove that for all n ∈ N, we must have 4n ≥ 3n + 1.
Proof by (vanilla) induction. Base case, n = 1, 4n = 4 ≥ 3 + 1 = 3n + 1.
Inductive case, let n ∈ N and assume that 4n ≥ 3n + 1. Multiply both sides by 4 to get
4n+1 = 4 · 4n ≥ 4 · 3n + 4 ≥ 4 · 3n + 1 ≥ 3 · 3n + 1 = 3n+1 + 1. Hence 4n+1 ≥ 3n+1 + 1.

ALTERNATE ALGEBRA: Multiply both sides by 3 to get 3 · 4n ≥ 3 · 3n + 3. Now, 4n+1 =
4 · 4n > 3 · 4n and also 3 · 3n + 3 > 3 · 3n + 1 = 3n+1 + 1. Combine everything to get
4n+1 ≥ 3n+1 + 1.



6. Prove that the Fibonacci numbers satisfy, for all n ∈ N0, that FnFn+1 =

n∑
i=0

F 2
i .

Proof by (shifted) induction. Base case n = 0: F0F1 = 0·1 = 0, while
∑0

i=0 F
2
i = F 2

0 = 02 = 0.
Inductive case, let n ∈ N0 and assume that FnFn+1 =

∑n
i=0 F

2
i . Add F 2

n+1 to both sides,

getting F 2
n+1 + FnFn+1 =

∑n+1
i=0 F

2
i . Now, F 2

n+1 + FnFn+1 = Fn+1(Fn+1 + Fn) = Fn+1Fn+2.

Combining, we get Fn+1Fn+2 =
∑n+1

i=0 F
2
i .

7. Solve the recurrence with initial conditions a0 = 3, a1 = −1, and relation an = an−1 + 6an−2

(for n ≥ 2).

The characteristic polynomial is x2 − x − 6 = (x − 3)(x + 2), whose roots are 3,−2. Hence
the general solution is an = A3n + B(−2)n. We now apply the initial conditions 3 = a0 =
A30 + B(−2)0 = A + B and −1 = a1 = A31 + B(−2)1 = 3A − 2B. We now solve the
system {3 = A + B,−1 = 3A − 2B} to get A = 1, B = 2. Hence, the specific solution is
an = 3n + 2(−2)n.

8. Prove or disprove: ∀x ∈ Z, !y ∈ Z, x = y2 + y.
The statement is false; a counterexample consists of an x and two different y’s. Many choices
are possible: (x = 0, y1 = 0, y2 = −1), (x = 2, y1 = 1, y2 = −2), (x = 6, y1 = 2, y3 = −3), etc.
In all cases, a complete solution must show that x = y21 + y1 and x = y22 + y2.

One full solution: Take x = 2, y1 = 1, y2 = −2. We have y21 + y1 = 12 + 1 = 2 = x and also
y22 + y2 = (−2)2 + (−2) = 4− 2 = 2 = x. Since y1 6= y2, the statement is false.

9. Let x, y ∈ R. Without using any theorems from Chapter 5, prove that: if x ≤ y then dxe ≤ dye.
Direct proof: suppose that x ≤ y. We apply the definition of ceiling twice: dxe− 1 < x ≤ dxe
and dye−1 < y ≤ dye. We combine the first inequality with x and the second inequality with
y, to get the chain dxe − 1 < x ≤ y ≤ dye, and hence dxe − 1 < dye. Since dxe − 1 and dye
are both integers, we can apply Theorem 1.12(a) from the book (you don’t need to know the
number, just that it’s a theorem and it’s not in chapter 5), getting dxe− 1 ≤ dye− 1. Adding
1 to both sides we get the desired dxe ≤ dye.

10. Let a, b ∈ Z with b ≥ 1. Use maximum element induction to prove that there are q, r ∈ Z
satisfying a = 2bq + r and −b < r ≤ b.
We set S = {m ∈ Z : m < a+b

2b }. The real number a+b
2b is an upper bound for S, and S is

nonempty because it is a halfline. By maximum element induction, there is some maximum
to S, i.e. some integer q such that q < a+b

2b but q + 1 ≥ a+b
2b . Set r = a − 2bq. We have

2bq < a+ b and hence −b < a− 2bq = r. We also have 2bq + 2b ≥ a+ b so b ≥ a− 2bq = r.
Combining, we get −b < r ≤ b, as desired. Since r = a− 2bq, we also have a = 2bq + r.


