1.

MATH 245 F24, Exam 2 Solutions

Carefully define the following terms: Proof by Shifted Induction, recurrence.

Let s € Z. To prove “Va € Z with x > s, P(x)” by shifted induction, we must (a) prove
P(s); and (b) prove Vx € Z with > s, P(x) — P(x 4+ 1). A recurrence is a sequence in
which all but finitely many terms are defined out of the previous terms.

Carefully state The Master Theorem.

Let a € N, k € R, and b € R with b > 1 (three constants). Let ¢, be a sequence with
cn = O(nF). Set d = logya. Consider now the sequence T}, = alyp + cn. The Master
Theorem now has three cases:

If k < d, then T, = ©(n?). If k = d, then T}, = ©(nlogn). If k > d then T,, = O(n¥).

Let a, = n® + 4n + sin(n). Prove or disprove that a, = O(n?).
The statement is true, and its proof has two halves.

a, = O(n3): Choose M = 6 and ng = 1. Let n > ng. Now, n® > n so 4n® > 4n. Also,
n® >n > 1. Now, |a,| < [n®| + |4n| + |sinn| < nd +4n +1 < nd + 4n3 +n3 = 6n3 = 6/b,,|.
an = Q(nB): Choose M = 1 andng = 1. Let n > ng. Now, sinn > —1,son+sinn > n—1 >0,
and hence n® + 3n + (n +sinn) > 0. Hence, 1|a,| = [n® + 4n + sinn| = n® + 4n + sinn =
n3 +3n + (n+sinn) > n3 4+ 0+ 0 = |by|.
COMMON ALGEBRA ERRORS: While it is true that |a 4+ b| < |a| + |b| (this is called the
triangle inequality), it is NOT true that |a 4 b| = |a| + |b|. For example, take a = 3,b = —3;
we have |a + b| = 0 while |a| + |b] = 6. It is also NOT true that |sinn| = sinn. For example,
take n = —m/2; we have |sinn| = 1 while sinn = —1. Some of you got these errors out of
your system when you were solving exercise 7.15, but some of you did not.
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Let n € Z. Prove that % € Z.
Note that n? —n —2 = (n —2)(n + 1). We apply the Division Algorithm Theorem to n, 2,
getting q,r € Z withn =2¢g+7rand 0 <7r < 2.
(or we can cite Cor. 1.8 to know that n is even or odd, then use the definitions of even, odd).

If n =2q + 0, then "272”72 = (2q—2;(n+1) =(g—1)(n+1) €Z.
If instead n = 2¢g + 1, then "2_2"_2 = ("_2)(22q+1+1) =(n-2)(¢+1)€Z

In both cases, ”2_2”_2 € 7.

Prove that for all n € N, we must have 4™ > 3" + 1.

Proof by (vanilla) induction. Base case, n =1,4" =4 >34+ 1=3"+1.

Inductive case, let n € N and assume that 4 > 3™ + 1. Multiply both sides by 4 to get
4l =447 >4.3"+4>4-3"+1>3-3"+1=3"" + 1. Hence 4" > 3"+ 4 1.

ALTERNATE ALGEBRA: Multiply both sides by 3 to get 3 -4™ > 3-3" 4+ 3. Now, 4"+ =
4-4" > 3-4" and also 3-3"+3 > 3-3"+ 1 = 3" 1 1. Combine everything to get
gntl > gntl 4,
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n
Prove that the Fibonacci numbers satisfy, for all n € Ny, that £, F,11 = ZFZ?.
i=0

Proof by (shifted) induction. Base case n = 0: FoFy = 0-1 = 0, while Y>0_, F? = F} = 0% = 0.
Inductive case, let n € Ny and assume that F,F,+1 = Z?:O FZ-Q. Add F,%H to both sides,
getting Fr%Jrl + FnFn-H = Z?:Jrol FZ'2~ NOW’ F13+1 + FnFn—H = Fn+1 (Fn+1 + Fn) = Fn+1Fn+2‘
Combining, we get Fy,11F, 12 = Z?:Jrol F2.

Solve the recurrence with initial conditions ag = 3,a7; = —1, and relation a, = ap_1 + 6a,_9
(for n > 2).

The characteristic polynomial is 22 — 2 — 6 = (z — 3)(z + 2), whose roots are 3, —2. Hence
the general solution is a,, = A3"™ + B(—2)". We now apply the initial conditions 3 = ay =
A3Y + B(-2)° = A+ B and —1 = a1 = A3' + B(-2)! = 34 — 2B. We now solve the
system {3 = A+ B,—1 = 3A — 2B} to get A = 1,B = 2. Hence, the specific solution is
ap = 3" +2(-2)".

Prove or disprove: Vo € Z,!y € Z, = = 3> + y.

The statement is false; a counterexample consists of an x and two different y’s. Many choices
are possible: (x =0,y1 = 0,y2 = —1),(z =2,y1 = 1,y2 = —2),(x = 6,y1 = 2,y3 = —3), etc.
In all cases, a complete solution must show that x = y3 +y; and = = y3 + yo.

One full solution: Take z = 2,y; = 1,40 = —2. We have y + 41 = 12+ 1 = 2 = 2 and also
Y3 +y2 = (=2)2 + (=2) =4 — 2 =2 = z. Since y; # ya, the statement is false.

Let z,y € R. Without using any theorems from Chapter 5, prove that: if z < y then [z]| < [y].
Direct proof: suppose that x < y. We apply the definition of ceiling twice: [z] —1 < x < [z]
and [y] —1 < y < [y]. We combine the first inequality with z and the second inequality with
y, to get the chain [z] — 1 < 2z <y < [y], and hence [z] — 1 < [y]. Since [z] — 1 and [y]
are both integers, we can apply Theorem 1.12(a) from the book (you don’t need to know the
number, just that it’s a theorem and it’s not in chapter 5), getting [z] —1 < [y] — 1. Adding
1 to both sides we get the desired [z] < [y].

Let a,b € Z with b > 1. Use maximum element induction to prove that there are q,r € Z
satisfying a = 2bqg +r and —b < r < b.

Weset S={meZ:m< “Q—ng}. The real number aTsz is an upper bound for S, and S is
nonempty because it is a halfline. By maximum element induction, there is some maximum

to S, i.e. some integer g such that g < ‘%b but ¢ +1 > “Q—sz. Set r = a — 2bq. We have

2bg < a + b and hence —b < a — 2bg = r. We also have 2bq +2b>a+bso b > a — 2bqg = r.
Combining, we get —b < r < b, as desired. Since r = a — 2bq, we also have a = 2bq + r.



